资源类型

期刊论文 150

会议视频 4

年份

2023 12

2022 10

2021 7

2020 7

2019 5

2018 13

2017 13

2016 5

2015 6

2014 1

2013 6

2012 8

2011 8

2010 11

2009 10

2008 8

2007 7

2006 6

2005 2

2004 2

展开 ︾

关键词

斜拉桥 9

悬索桥 5

一阶分析法 2

主缆 2

南京长江第四大桥 2

大规格 2

安全系数 2

悬索 2

苏通大桥斜拉桥 2

10kV高压电力电缆 1

1860 MPa等级 1

4250 m 1

4D CAD 1

Arrhenius模型 1

CFRP索斜拉桥 1

Chebyshev多项式 1

Cu(In 1

Ga)Se2 1

PPWS 1

展开 ︾

检索范围:

排序: 展示方式:

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

《机械工程前沿(英文)》 2013年 第8卷 第4期   页码 350-359 doi: 10.1007/s11465-013-0271-9

摘要:

Cable-suspended manipulators are used in large scale applications with, heavy in weight and long in span cables. It seems impractical to maintain cable assumptions of smaller robots for large scale manipulators. The interactions among the cables, platforms and actuators can fully evaluate the coupled dynamic analysis. The structural flexibility of the cables becomes more pronounced in large manipulators. In this paper, an analytic solution is provided to solve cable vibration. Also, a closed form solution can be adopted to improve the dynamic response to flexibility. The output is provided by the optimal torque generation subject to the actuator limitations in a mechatronic sense. Finally, the performance of the proposed algorithm is examined through simulations.

关键词: parallel robot     flexible cable     suspended robot     dynamic    

Piezoelectric pump with flexible venous valves for active cell transmission

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0712-4

摘要: The development of organ-on-a-chip systems demands high requirements for adequate micro-pump performance, which needs excellent performance and effective transport of active cells. In this study, we designed a piezoelectric pump with a flexible venous valve inspired by that of humans. Performance test of the proposed pump with deionized water as the transmission medium shows a maximum output flow rate of 14.95 mL/min when the input voltage is 100 V, and the pump can transfer aqueous solutions of glycerol with a viscosity of 10.8 mPa·s. Cell survival rate can reach 97.22% with a yeast cell culture solution as the transmission medium. A computational model of the electric-solid-liquid multi-physical field coupling of the piezoelectric pump with a flexible venous valve is established, and simulation results are consistent with experimental results. The proposed pump can help to construct the circulating organ-on-a-chip system, and the simple structure and portable application can enrich the design of microfluidic systems. In addition, the multi-physical field coupling computational model established for the proposed piezoelectric pump can provide an in-depth study of the characteristics of the flow field, facilitating the optimal design of the micro-pump and providing a reference for the further study of active cell transport in organ-on-a-chip systems.

关键词: venous valve     flexible venous valve     cell transmission     organ-on-a-chip system     piezoelectric device    

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

《结构与土木工程前沿(英文)》 2019年 第13卷 第5期   页码 1227-1242 doi: 10.1007/s11709-019-0551-5

摘要: The cable system of cable-supported structures usually bears high tension forces, and clip joints may fail to resist cable sliding in cases of earthquake excitations or sudden cable breaks. A analytical method that considers the dynamic cable sliding effect is proposed in this paper. Cable sliding behaviors and the resultant dynamic responses are solved by combining the vector form intrinsic finite element framework with cable force redistribution calculations that consider joint frictions. The cable sliding effect and the frictional tension loss are solved with the original length method that uses cable length and the original length relations. Then, the balanced tension distributions are calculated after frictional sliding. The proposed analytical method is achieved within MATLAB and applied to simulate the dynamic response of a cable-supported plane truss under seismic excitation and sudden cable break. During seismic excitations, the cable sliding behavior in the cable-supported truss have an averaging effect on the oscillation magnitudes, but it also magnifies the internal force response in the upper truss structure. The slidable cable joints can greatly reduce the ability of a cable system to resist sudden cable breaks, while strong friction resistances at the cable-strut joints can help retain internal forces.

关键词: sliding cable     explicit solution framework     original length method     seismic response     cable rupture    

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

《机械工程前沿(英文)》 2011年 第6卷 第2期   页码 235-240 doi: 10.1007/s11465-011-0122-5

摘要:

To solve many key technical problems during the development of modern instrumentation system integration and provide a new mode and fundamental technical equipment for the research and development (R&D) of modern instrumentation products, based on the concept of an instrumentation flexible developing system (IFDS), this paper discusses the creation and open flexible integration mechanism, perfects the integrated supporting environment and integrated system of the flexible interconnection, and constructs the new flexible integrated system. Based on the operation mechanism of the modern instrumentation developing system and the research and optimization of the rapid integration design method, the paper emphasizes the dynamic integrating method of multiple types of knowledge in a modern instrument R&D system, to effectively utilize the rich integrated resource and achieve rapid integration of the system. Applications show that the new IFDS can improve the integration level and efficiency of R&D of the modern instrumentation system, enforce the reliability of the system, shorten the R&D period, and reduce the development costs.

关键词: modern instrumentation developing     flexible interconnection     flexible integration mechanism     rapid integration system     dynamic integrating method    

Review on flexible perovskite photodetector: processing and applications

《机械工程前沿(英文)》 2023年 第18卷 第2期 doi: 10.1007/s11465-023-0749-z

摘要: Next-generation optoelectronics should possess lightweight and flexible characteristics, thus conforming to various types of surfaces or human skins for portable and wearable applications. Flexible photodetectors as fundamental devices have been receiving increasing attention owing to their potential applications in artificial intelligence, aerospace industry, and wise information technology of 120, among which perovskite is a promising candidate as the light-harvesting material for its outstanding optical and electrical properties, remarkable mechanical flexibility, low-cost and low-temperature processing methods. To date, most of the reports have demonstrated the fabrication methods of the perovskite materials, materials engineering, applications in solar cells, light-emitting diodes, lasers, and photodetectors, strategies for device performance enhancement, few can be seen with a focus on the processing strategies of perovskite-based flexible photodetectors, which we will give a comprehensive summary, herein. To begin with, a brief introduction to the fabrication methods of perovskite (solution and vapor-based methods), device configurations (photovoltaic, photoconductor, and phototransistor), and performance parameters of the perovskite-based photodetectors are first arranged. Emphatically, processing strategies for photodetectors are presented following, including flexible substrates (i.e., polymer, carbon cloth, fiber, paper, etc.), soft electrodes (i.e., metal-based conductive networks, carbon-based conductive materials, and two-dimensional (2D) conductive materials, etc.), conformal encapsulation (single-layer and multilayer stacked encapsulation), low-dimensional perovskites (0D, 1D, and 2D nanostructures), and elaborate device structures. Typical applications of perovskite-based flexible photodetectors such as optical communication, image sensing, and health monitoring are further exhibited to learn the flexible photodetectors on a deeper level. Challenges and future research directions of perovskite-based flexible photodetectors are proposed in the end. The purpose of this review is not only to shed light on the basic design principle of flexible photodetectors, but also to serve as the roadmap for further developments of flexible photodetectors and exploring their applications in the fields of industrial manufacturing, human life, and health care.

关键词: photodetector     perovskite     flexible     processing     application    

A review of the scalable nano-manufacturing technology for flexible devices

Wenbin HUANG,Xingtao YU,Yanhua LIU,Wen QIAO,Linsen CHEN

《机械工程前沿(英文)》 2017年 第12卷 第1期   页码 99-109 doi: 10.1007/s11465-017-0416-3

摘要:

Recent advances in electronic and photonic devices, such as artificial skin, wearable systems, organic and inorganic light-emitting diodes, have gained considerable commercial and scientific interest in the academe and in industries. However, low-cost and high-throughput nano-manufacturing is difficult to realize with the use of traditional photolithographic processes. In this review, we summarize the status and the limitations of current nano-patterning techniques for scalable and flexible functional devices in terms of working principle, resolution, and processing speed. Finally, several remaining unsolved problems in nano-manufacturing are discussed, and future research directions are highlighted.

关键词: flexible nano-manufacturing     flexible devices     nanofabrication     scalability    

Possible role of power-to-heat and power-to-gas as flexible loads in German medium voltage networks

Mark KUPRAT, Martin BENDIG, Klaus PFEIFFER

《能源前沿(英文)》 2017年 第11卷 第2期   页码 135-145 doi: 10.1007/s11708-017-0472-8

摘要: Germany’s energy transition triggered a rapid and unilateral growth of renewable energy sources (RES) in the electricity sector. With increasing shares of intermittent RES, overcapacities during periods of strong wind and photovoltaic electricity generation occur. In the face of insufficient transmission capacities, due to an inhibited network extension, the electricity generation has to be curtailed. This curtailment of RES leads to economic losses and could be avoided through flexible loads. As an option to cope with those problems, the technologies of power-to-gas (PtG) and power-to-heat (PtH) are presented in this paper. First, the alkaline electrolyzer (AEL), polymer electrolyte membrane electrolyzer (PEMEL), and solid oxide electrolyzer cell (SOEC) are investigated regarding their operational parameters. Second, the electric boiler, electrode heating boiler, and heat pumps are considered. Ultimately, the network-supporting abilities and the potential to provide ancillary services, such as control power, load sequence operation, cold start and part load capability, are compared among one another.

关键词: power-to-gas     power-to-heat     flexible loads     ancillary services     coherent energy systems    

复合柔性结构航天器动力学建模研究

曲广吉,程道生

《中国工程科学》 1999年 第1卷 第2期   页码 52-56

摘要:

柔性航天器动力学建模的传统方法是采用混合坐标法,针对中心刚体带大型柔性附件类的航天器,这种方法在理论建模和工程应用方面都获得了极大的成功。在中心刚体加柔性附件类航天器柔性动力学研究成果基础上,通过计及柔性体与柔性体连接点间的复合位移变形,利用混合坐标法建立了复合柔性结构航天器动力学模型,其软件系统DASFA 2.0已初步用于工程分析设计。

关键词: 航天器     复合柔性结构     柔性动力学     混合坐标法    

State-of-the-art on theories and applications of cable-driven parallel robots

《机械工程前沿(英文)》 2022年 第17卷 第3期 doi: 10.1007/s11465-022-0693-3

摘要: Cable-driven parallel robot (CDPR) is a type of high-performance robot that integrates cable-driven kinematic chains and parallel mechanism theory. It inherits the high dynamics and heavy load capacities of the parallel mechanism and significantly improves the workspace, cost and energy efficiency simultaneously. As a result, CDPRs have had irreplaceable roles in industrial and technological fields, such as astronomy, aerospace, logistics, simulators, and rehabilitation. CDPRs follow the cutting-edge trend of rigid–flexible fusion, reflect advanced lightweight design concepts, and have become a frontier topic in robotics research. This paper summarizes the kernel theories and developments of CDPRs, covering configuration design, cable-force distribution, workspace and stiffness, performance evaluation, optimization, and motion control. Kinematic modeling, workspace analysis, and cable-force solution are illustrated. Stiffness and dynamic modeling methods are discussed. To further promote the development, researchers should strengthen the investigation in configuration innovation, rapid calculation of workspace, performance evaluation, stiffness control, and rigid–flexible coupling dynamics. In addition, engineering problems such as cable materials, reliability design, and a unified control framework require attention.

关键词: cable-driven parallel robot     kinematics     optimization     dynamics     control    

Estimation of flexible pavement structural capacity using machine learning techniques

Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND

《结构与土木工程前沿(英文)》 2020年 第14卷 第5期   页码 1083-1096 doi: 10.1007/s11709-020-0654-z

摘要: The most common index for representing structural condition of the pavement is the structural number. The current procedure for determining structural numbers involves utilizing falling weight deflectometer and ground-penetrating radar tests, recording pavement surface deflections, and analyzing recorded deflections by back-calculation manners. This procedure has two drawbacks: falling weight deflectometer and ground-penetrating radar are expensive tests; back-calculation ways has some inherent shortcomings compared to exact methods as they adopt a trial and error approach. In this study, three machine learning methods entitled Gaussian process regression, M5P model tree, and random forest used for the prediction of structural numbers in flexible pavements. Dataset of this paper is related to 759 flexible pavement sections at Semnan and Khuzestan provinces in Iran and includes “structural number” as output and “surface deflections and surface temperature” as inputs. The accuracy of results was examined based on three criteria of , , and . Among the methods employed in this paper, random forest is the most accurate as it yields the best values for above criteria ( =0.841, =0.592, and =0.760). The proposed method does not require to use ground penetrating radar test, which in turn reduce costs and work difficulty. Using machine learning methods instead of back-calculation improves the calculation process quality and accuracy.

关键词: transportation infrastructure     flexible pavement     structural number prediction     Gaussian process regression     M5P model tree     random forest    

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

《机械工程前沿(英文)》 2022年 第17卷 第4期 doi: 10.1007/s11465-022-0687-1

摘要: Masticatory robots are an effective in vitro performance testing device for dental material and mandibular prostheses. A cable-driven linear actuator (CDLA) capable of bidirectional motion is proposed in this study to design a masticatory robot that can achieve increasingly human-like chewing motion. The CDLA presents remarkable advantages, such as lightweight and high stiffness structure, in using cable amplification and pulley systems. This work also exploits the proposed CDLA and designs a masticatory robot called Southeast University masticatory robot (SMAR) to solve existing problems, such as bulky driving linkage and position change of the muscle’s origin. Stiffness analysis and performance experiment validate the CDLA’s efficiency, with its stiffness reaching 1379.6 N/mm (number of cable parts n = 4), which is 21.4 times the input wire stiffness. Accordingly, the CDLA’s force transmission efficiencies in two directions are 84.5% and 85.9%. Chewing experiments are carried out on the developed masticatory robot to verify whether the CDLA can help SMAR achieve a natural human-like chewing motion and sufficient chewing forces for potential applications in performance tests of dental materials or prostheses.

关键词: masticatory robot     cable-driven     linear actuator     parallel robot     stiffness analysis    

Nonlinear analysis of cable structures using the dynamic relaxation method

Mohammad REZAIEE-PAJAND, Mohammad MOHAMMADI-KHATAMI

《结构与土木工程前沿(英文)》 2021年 第15卷 第1期   页码 253-274 doi: 10.1007/s11709-020-0639-y

摘要: The analysis of cable structures is one of the most challenging problems for civil and mechanical engineers. Because they have highly nonlinear behavior, it is difficult to find solutions to these problems. Thus far, different assumptions and methods have been proposed to solve such structures. The dynamic relaxation method (DRM) is an explicit procedure for analyzing these types of structures. To utilize this scheme, investigators have suggested various stiffness matrices for a cable element. In this study, the efficiency and suitability of six well-known proposed matrices are assessed using the DRM. To achieve this goal, 16 numerical examples and two criteria, namely, the number of iterations and the analysis time, are employed. Based on a comprehensive comparison, the methods are ranked according to the two criteria. The numerical findings clearly reveal the best techniques. Moreover, a variety of benchmark problems are suggested by the authors for future studies of cable structures.

关键词: nonlinear analysis     cable structure     stiffness matrix     dynamic relaxation method    

A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0722-2

摘要: This paper proposes a novel modular cable-driven humanoid arm with anti-parallelogram mechanisms (APMs) and Bowden cables. The lightweight arm realizes the advantage of joint independence and the rational layout of the driving units on the base. First, this paper analyzes the kinematic performance of the APM and uses the rolling motion between two ellipses to approximate a pure-circular-rolling motion. Then, a novel type of one-degree-of-freedom (1-DOF) elbow joint is proposed based on this principle, which is also applied to design the 3-DOF wrist and shoulder joints. Next, Bowden cables are used to connect the joints and their driving units to obtain a modular cable-driven arm with excellent joint independence. After that, both the forward and inverse kinematics of the entire arm are analyzed. Last, a humanoid arm prototype was developed, and the assembly velocity, joint motion performance, joint stiffness, load carrying, typical humanoid arm movements, and repeatability were tested to verify the arm performance.

关键词: modular robotic arm     anti-parallelogram mechanism     Bowden cable     humanoid arm     lightweight joint design    

Design and applications of morphing aircraft and their structures

《机械工程前沿(英文)》 2023年 第18卷 第3期 doi: 10.1007/s11465-023-0750-6

摘要: Morphing aircraft can adaptively regulate their aerodynamic layout to meet the demands of varying flight conditions, improve their aerodynamic efficiency, and reduce their energy consumption. The design and fabrication of high-performance, lightweight, and intelligent morphing structures have become a hot topic in advanced aircraft design. This paper discusses morphing aircraft development history, structural characteristics, existing applications, and future prospects. First, some conventional mechanical morphing aircraft are examined with focus on their morphing modes, mechanisms, advantages, and disadvantages. Second, the novel applications of several technologies for morphing unmanned aerial vehicles, including additive manufacturing for fabricating complex morphing structures, lattice technology for reducing structural weight, and multi-mode morphing combined with flexible skins and foldable structures, are summarized and categorized. Moreover, in consideration of the further development of active morphing aircraft, the paper reviews morphing structures driven by smart material actuators, such as shape memory alloy and macro-fiber composites, and analyzes their advantages and limitations. Third, the paper discusses multiple challenges, including flexible structures, flexible skins, and control systems, in the design of future morphing aircraft. Lastly, the development and application of morphing structures in the aerospace field are discussed to provide a reference for future research and engineering applications.

关键词: morphing aircraft     additive manufacturing     lattice structure     smart material     flexible structure     flexible skin    

A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors

《化学科学与工程前沿(英文)》 2023年 第17卷 第9期   页码 1208-1220 doi: 10.1007/s11705-023-2304-1

摘要: The combination of high-voltage windows and bending stability remains a challenge for supercapacitors. Here, we present an “advantage-complementary strategy” using sodium lignosulfonate as a pseudocapacitive molecule to regulate the spatial stacking pattern of graphene oxide and the interfacial architectures of graphene oxide and polyaniline. Flexible and sustainable sodium lignosulfonate-based electrodes are successfully developed, showing perfect bending stability and high electronic conductivity and specific capacitance (521 F·g−1 at 0.5 A·g–1). Due to the resulting rational interfacial structure and stable ion-electron transport, the asymmetric supercapacitors provide a wide voltage window reaching 1.7 V, outstanding bending stability and high energy-power density of 83.87 Wh·kg–1 at 3.4 kW·kg–1. These properties are superior to other reported cases of asymmetric energy enrichment. The synergistic strategy of sodium lignosulfonate on graphene oxide and polyaniline is undoubtedly beneficial to advance the process for the construction of green flexible supercapacitors with remarkably wide voltage windows and excellent bending stability.

关键词: molecular synergy     pseudocapacitive lignosulfonate     flexible electronic devices     asymmetric supercapacitor     wide voltage windows    

标题 作者 时间 类型 操作

Analytical dynamic solution of a flexible cable-suspended manipulator

Mahdi BAMDAD

期刊论文

Piezoelectric pump with flexible venous valves for active cell transmission

期刊论文

Finite element modeling of cable sliding and its effect on dynamic response of cable-supported truss

Yujie YU, Zhihua CHEN, Renzhang YAN

期刊论文

Creation and integration mechanism of instrumentation flexible developing system

Xiaoli XU, Qiushuang LIU

期刊论文

Review on flexible perovskite photodetector: processing and applications

期刊论文

A review of the scalable nano-manufacturing technology for flexible devices

Wenbin HUANG,Xingtao YU,Yanhua LIU,Wen QIAO,Linsen CHEN

期刊论文

Possible role of power-to-heat and power-to-gas as flexible loads in German medium voltage networks

Mark KUPRAT, Martin BENDIG, Klaus PFEIFFER

期刊论文

复合柔性结构航天器动力学建模研究

曲广吉,程道生

期刊论文

State-of-the-art on theories and applications of cable-driven parallel robots

期刊论文

Estimation of flexible pavement structural capacity using machine learning techniques

Nader KARBALLAEEZADEH, Hosein GHASEMZADEH TEHRANI, Danial MOHAMMADZADEH SHADMEHRI, Shahaboddin SHAMSHIRBAND

期刊论文

Development of a masticatory robot using a novel cable-driven linear actuator with bidirectional motion

期刊论文

Nonlinear analysis of cable structures using the dynamic relaxation method

Mohammad REZAIEE-PAJAND, Mohammad MOHAMMADI-KHATAMI

期刊论文

A modular cable-driven humanoid arm with anti-parallelogram mechanisms and Bowden cables

期刊论文

Design and applications of morphing aircraft and their structures

期刊论文

A pseudocapacitive molecule-induced strategy to construct flexible high-performance asymmetric supercapacitors

期刊论文